Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors
نویسندگان
چکیده
BACKGROUND Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. RESULTS We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis. CONCLUSIONS We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.
منابع مشابه
Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2+
Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe2+ are reported to be important for astaxanthin accumulation in H. pluvialis. In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL), addition of 25 mM acetate...
متن کاملComparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis
Haematococcus pluvialis cells predominantly remain in the macrozooid stage under favourable environmental conditions but are rapidly differentiated into haematocysts upon exposure to various environmental stresses. Haematocysts are characterized by massive accumulations of astaxanthin sequestered in cytosolic oil globules. Lipidomic analyses revealed that synthesis of the storage lipid triacylg...
متن کاملFour Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis
Haematococcus pluvialis is one of the potent organisms for production of astaxanthin. Up to now, no efficient method has been achieved due to its thick cell wall hindering solvent extraction of astaxanthin. In this study, four different methods, hydrochloric acid pretreatment followed by acetone extraction (HCl-ACE), hexane/isopropanol (6:4, v/v) mixture solvents extraction (HEX-IPA), methanol ...
متن کاملEvaluation of SCD and FASN Gene Expression in Baluchi, Iran-Black, and Arman Sheep
Background: With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in the diet is important because they are associated with major diseases including cancers, diabetes, and cardiovascular disease. The fatty acid synthase (FASN) and stearoyl-CoA desaturase (delta-9-desaturase) (SCD) genes affect fatty acid compositio...
متن کاملDifferential Expression of Carotenogenic Genes, Associated Changes on Astaxanthin Production and Photosynthesis Features Induced by JA in H. pluvialis
Haematococcus pluvialis is an organism that under certain conditions can produce astaxanthin, an economically important carotenoid. In this study, the transcriptional expression patterns of eight carotenogenic genes of H. pluvialis in response to jasmonic acid (JA) were evaluated using real-time PCR. Astaxanthin accumulation action and photosynthesis flourescence were monitored at the same time...
متن کامل